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Summary

Introduction: Different DNA and RNA viruses exploit common strategies to support their persi-
stence and replication in infected individuals. In particular, the hepatitis B virus (HBV) and the
hepatitis C virus (HCV) cause major health problems worldwide. These pathogens exert an
immunosuppressive role by inducing the persistent activation of cyclooxygenase-2 (COX-2) and
an increased synthesis of prostaglandin E2 (PGE2). The suppression of this proinflammatory
network by non-steroidal anti-inflammatory drugs (NSAIDs) has been proposed as a therapeutic
approach to decrease viral replication.
Materials andmethods: In this review, the role of inflammation in the support of viral replication
and NSAIDs and ketoprofen pharmacology are briefly discussed. In addition, studies that have
investigated the use of NSAIDs for the treatment of HBV and HCV chronic hepatitis, which were
identified by a systematic literature search of PubMed and MEDLINE, are reported.
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Results: To date, pegylated-interferon (PEG-IFN) and/or nucleot(s)ide analogues and PEG-IFN
and ribavirin remain the standard therapy for HBV and HCV chronic hepatitis, respectively.
Discussion: The use of NSAIDs in patients with chronic viral hepatitis has only a ‘‘historical’’
interest. Nevertheless, the possible usefulness of ketoprofen with PEG-IFN and ribavirin for HCV-
infected patients, non-responders to standard therapy or with genotype 1, should be evaluated in
future clinical studies.
� 2011 Elsevier Srl. All rights reserved.
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Introduction

Hepatitis B (HBV) [1] and C viruses (HCV) [2] are common
infectious agents worldwide and represent serious public
health problems. These viruses may cause chronic infections
and induce necroinflammatory hepatic damage with poten-
tially severe sequelae, such as cirrhosis, hepatocellular car-
cinoma and liver failure [3—7].

Interferon-Alpha (IFN-a) alone is the treatment of choice
for HBV and HCV chronic hepatitis, but the virological
response rates are unsatisfactory [8,9]. Therefore, new stra-
tegies for the treatment of chronic viral hepatitis have been
developed. The current gold-standard therapies rely upon
nucleot(s)ide analogues or PEG-IFN for chronic HBV infection,
and pegylated-interferon (PEG-IFN) in association with riba-
virin for HCV infection [10,11]. Nevertheless, these regimens
do not achieve a sustained response in all patients. There-
fore, the introduction of new, tolerable and efficacious
therapies is mandatory. Recently, novel potential anti-HCV
drugs, such as the anti-viral therapy specifically targeted for
hepatitis C (STAT-C), are under clinical phase I-III evaluation.
These therapies might improve antiviral activity in subjects
with HCV genotypes 1 and 4 in particular, who are characte-
rized by a lower response rate compared to genotypes 2 and 3
[12,13]. Unfortunately, preliminary data report the develop-
ment of drug resistance mutations, which is similar to the
results obtained with anti-HIV and anti-HBV treatments [14].

Some in vitro and in vivo studies have shown that the
antiviral efficacy of IFN-a treatment, in both HBV and HCV
patients, may be enhanced by the addition of NSAIDs
[15—21].

The aim of this review is to examine the following data:

1) t
he role of inflammation in viral replication support;

2) t
he function of the interferon system;

3) t
he prostaglandin synthesis pathway;

4) p
rostaglandin E2 as an immune system modulator;

5) t
he pharmacology of NSAIDs and ketoprofen;

6) t
he role of NSAIDs in the treatment of patients with HBV

and HCV chronic viral hepatitis.

Role of inflammation in viral replication
support

Viral infection generates a strong acute host reaction and
activates many preexisting antiviral defense systems in infec-
ted cells [22]. Early host responses to viral infection are
generally nonspecific and include the induction of an inflam-
matory reaction with the production and release of several
soluble factors, such as interferons (IFN) [23], prostaglandins
and cytokines, by distinct cellular effectors of the immune
system [24]. Subsequently, a virus-specific immune response
develops with the emergence of specific CD4 and CD8 T
lymphocytes [25]. A complex relationship exists among the
members of specific and nonspecific immune responses [26].
The final result of these events is the control of viral repli-
cation and the prevention of viral spreading [27]. Although
these mechanisms develop to ensure an effective host
defense against intracellular invading pathogens and play a
crucial protective role [28], their activation may have dele-
terious effects for infected organisms [29]. In the last several
years, it has become increasingly clear that several viruses
may benefit from the induction of a strong inflammatory
response [30]. Several viruses in humans and animals, such
as herpesviruses (HSV) [31], cytomegalovirus (HCMV) [32],
Epstein-Barr virus [33], human immunodeficiency virus (HIV)
[34], and hepatitis B and C viruses [35,36], exploit common
and effective strategies to support their persistence and
replication in infected individuals through the modulation
and perturbation of host defenses [37]. Several virus-specific
proteins that are produced during the viral life cycle affect
intracellular pathways and immune effector cells by stimu-
lating specific molecules and proinflammatory cytokines that
prevent an effective antiviral response [38,39]. In particular,
prostaglandin E2 (PGE2) has a pivotal role in the inflamma-
tory reaction [40] and serves as a second messenger by
eliciting a wide spectrum of cellular physiological functions
[41]. Different viruses stimulate the synthesis of PGE2,
which, in turn, supports the production of its progeny. The
complex interplay of signals and the factors that are involved
in this control-regulatory loop during the course of HBV and
HCV chronic infections are discussed briefly below.

Interferon system function

Following a viral infection, an early inflammatory response in
mammals is represented by the induction and release of IFNs,
including interferon-a (IFN-a), -b (IFN-b) and -g (IFN-g) [42].
These regulatory proteins act by promoting a global antiviral
state and inhibiting viral replication. Hematopoietic cells in
particular, plasmacytoid dendritic cells, are the cellular
source of IFN-a [43]; non-hematopoietic cells, such as fibro-
blasts, produce IFN-b [44]. The binding of IFN-a to its recep-
tor activates different enzymes, including the receptor-
associated Janus-family kinases, Tyk-2 and Jak-1, and signal
transducers and activators of transcription proteins (STAT)
[45]. Different mechanisms control this complex pathway
[46]. In addition, IFN-a induces the phosphorylation of phos-
pholipase A2 (cPLA-2), an enzyme that catalyzes phospholi-
pid hydrolysis and arachidonic acid (AA) release from the
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Figure 1 Chemical structure of ketoprofen.
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cellular membrane [47]. AA is a substrate for cyclo-oxyge-
nase-, lipoxygenase- and epoxygenase-enzymatic pathways
for the synthesis of prostaglandins (PGs), leukotrienes and
other eicosanoids [48]. AA also stimulates mitogen-activated
protein kinases (MAPKs), which promote the activation of
STAT1 via phosphorylation at serine residues [49,50].

Prostaglandin synthesis pathway

The synthesis of PGs is mediated by COXs. These COX enzy-
mes, also named prostaglandin H2 (PGH2) synthases, have
both a COX activity, which catalyzes the conversion of AA to
prostaglandin G2 (PGG2), and a peroxidase function, which
induces the reduction of PGG2 to PGH2 [51]. Two distinct
isoforms of COX have been well characterized. COX-1 is
constitutively present in different cell types, but COX-2
expression is induced by cytokines and growth factors [52].
COX-2 induction is promoted [53] by the oxidative stress that
is caused by viral infections [54,55]. PGH2 is a common
precursor for the synthesis of all prostanoids, including
PGE2 [56]. A variety of DNA and RNA viruses, including HSV,
HCMV, HIV, HBVand HCV, up-regulate COX-2 activity [57—61].
COX-2 expression and PGE2 synthesis are essential events for
an efficient viral replication in infected hosts, modulating
transcription from viral promoters. The inhibition of COX-2
activity by drugs reduces viral progeny in cultured cells [32],
but supplementation with PGE2 has the opposite effect.
Nevertheless, the PGE2 that is generated by COX-2 activation
down-regulates HBV and HCV replication [57,58]. The discre-
pancy between these results might be related to the types of
cells and the conditions of culture.

Prostaglandin E2 as a modulator of the
immune system

It has become increasingly clear that PGE2 plays a critical
immunosuppressive role [62]. PGE2 modulates host defenses
against invading pathogens by affecting both the innate and
adaptive arms of the immune system [63]. Namely, PGE2
inhibits nitric oxide (NO) production and down-regulates the
CD4+ T helper 1 (Th1) lymphocyte response [64], which
decreases interleukin-2 (IL-2), IL-12 and IFN-g production
[65]. NO is a cytotoxic compound with antimicrobial and
antiviral properties. In particular, NO reduces the replication
of both DNA and RNA viruses. PGE2 counteracts the antiviral
effects of NO through a negative feedback loop [66] and
interferes with the production of cytokines. The immunosup-
pressive effects of PGE2 synthesis have also been described in
patients with chronic liver disease. The inhibition of COX
enhances IFN-g release by peripheral blood mononuclear
cells [67], and treatment with intravenous and oral PGE2
in patients with either fulminant viral hepatic failure or
recurrent HBV infection after orthotopic liver transplanta-
tion has resulted in a dramatic improvement in their survival
[68]. The inhibition of PGE2 production may enhance the Th1
response and improve the antiviral function of the immune
system. Among the different compounds with these activi-
ties, NSAIDs possess very interesting properties. In fact,
NSAIDs control cytokine production by T lymphocytes [69]
through an up-regulation of tumor necrosis factor a (TNF-a),
IL-2 and IFN-g and the inhibition of the release of IL-4 and IL-
6. In 2004, a study tested the in vitro effect of indomethacin
and IFN-a on Th1 and Th2 cytokine synthesis in patients with
chronic hepatitis C [17]. The results demonstrated that IFN-a
and indomethacin alone were able to increase Th1 response,
while their association caused a further synergistic effect,
counteracting the synthesis of Th2 cytokines and increasing
both the IFN-a-induced Th1 response and antiviral protein 2,5
(OAS).

Pharmacology of ketoprofen

Absorption, distribution and metabolism

Among the NSAIDs, ketoprofen is a paradigm and displays
anti-inflammatory, analgesic and antipyretic properties by
the inhibition of prostaglandin and leukotriene synthesis
[70]. Its structural formula is depicted in Figure 1.

Ketoprofen is a racemic compound with only the S (+)
enantiomer exhibiting pharmacological properties [71].
After administration, the drug is rapidly absorbed in the
stomach and bound to plasma proteins, such as albumin.
The total bioavailability of ketoprofen is not modified by
meals, and its absorption is not changed by antiacids. Keto-
profen is mainly metabolized via glucuronide conjugation to
generateanunstable acyl-glucuronide,whichmaybe reverted
to the parent form. Therefore, a progressive accumulation of
glucuro-conjugated drug with the possible regeneration of
active molecules may occur.

No important differences in efficacy and safety have been
detected in several previous studies that have compared
ketoprofen, aspirin, ibuprofen, naproxen, piroxicam, diclo-
fenac and indomethacin [72].

Role of non-steroidal anti-inflammatory drug
(NSAIDs) in the treatment of patients with
chronic viral hepatitis

Patients with HBVand HCV chronic hepatitis have a persistent
activation of COX-2 and a subsequently increased PGE2
production compared to control subjects [53,57,58], even
after an efficacious antiviral therapy. The expression of COX-
2 and the synthesis of PGE2 lead to reactive oxygen species
(ROS) generation. This process is caused by virus-induced
cellular oxidative stress via calcium release from the endo-
plasmic reticulum and its uptake by mitochondria [53,58].
ROS act as second messengers and activate NF-kB [36,53].
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NF-kB binding sites have been detected in the COX-2 promo-
ter/enhancer region; therefore, NF-kB controls COX-2 gene
expression [73]. The NSAID-induced inhibition of PGE2 pro-
duction is expected to decrease viral replication [37,32].
Clinical studies in patients with HBV and HCV chronic hepa-
titis also suggest that NSAIDs cause both the enhancement of
IFN-a-induced 2,5-OAS, which is an enzyme that exhibits
strong antiviral properties, and the increase of IFN-a-depen-
dent gene activation. In 1991, Hanningan and Williams, in an
in vitro study, reported that the in vitro NSAID inhibition of
COX and lipoxygenase activities promotes a marked amplifi-
cation of the IFN signal, which shifts AA toward the epoxy-
genase enzymatic metabolic pathway with the consequent
induction of 2,5-OAS [48]. Fibroblasts cultured either with
IFN-a plus indomethacin or indomethacin alone demonstrate
a 3- or 0.5-fold enhancement of 2,5 OAS, respectively,
compared to fibroblasts treated with IFN-a alone [74]. In
1993, Andreone et al. reported that indomethacin abolished
the IFN-a-induced enhancement of PGE2 synthesis in cultu-
red liver tissue from patients with HBV and HCV chronic
infections [21]. In 1994 and 1996, two further in vitro and
in vivo studies confirmed that IFN-a and indomethacin exert a
synergistic activity and induce a 4-fold increase in 2,5-OAS
production in subjects with HBV and HCV chronic hepatitis
[20,75]. An in vitro study has suggested that indomethacin,
via blockade of AA metabolism, promotes IFN-a-dependent
transcription via an increase of STAT1 tyrosine phosphoryla-
tion [16]. In addition, acetylsalicylic acid inhibited HCV RNA
and protein expression in a hepatoma cell line, which con-
tained an HCV subgenomic replicon, via its suppressive acti-
vity on COX-2 expression. This effect was mediated in part by
the activation of the MAPK/extracellular signal-regulated
kinase kinase [76]. These interesting results provided the
rationale to test the efficacy, tolerability and safety of IFN-a
plus NSAIDs in clinical trials in patients with HBV- and HCV-
related chronic liver disease. Different NSAIDs with distinct
pharmacologic properties have been used, including indome-
thacin, ketoprofen and tenoxicam, with conflicting results.

Trials evaluating NSAIDs alone or in association
with IFN-a as a treatment for patients with HBV
chronic hepatitis

To date, only a few studies have tested the association
between IFN-a and NSAIDs as a treatment for patients with
HBV chronic liver disease. A pilot trial reported that the
administration of IFN-a (6 MU thrice weekly) plus indome-
thacin (25 mg orally twice a day) for six months induced a
biochemical (3 out of 6 cases) and virological (1 case)
response in patients with HBeAg positive chronic hepatitis,
non-responders to a previous IFN-a course. Interestingly,
further transaminase normalization (1 patient), HBV DNA
loss (2 patients), and HBeAb seroconversion (1 patient)
occurred during the 6-month period of observation that
followed treatment. This therapy was well tolerated, and
no important side effects were reported [75]. Two further
randomized studies have been performed to examine the
effects of indomethacin alone in patients with HBV chronic
infection with an asymptomatic course. In the first study,
chronic HBV ‘‘inactive’’ carriers were randomized into two
groups: 1) 42 patients were treated with oral indomethacin
75 mgaday for 6months, and2) 23patients served as controls.
All patients were followed-up for 6 months after treatment.
Indomethacin induced HBeAg to HBeAb seroconversion and
HBV-DNA loss in a significantly higher number of patients in
comparison to controls [77]. In 2005, the results of a larger
placebo-controlled double-masked study, which enrolled 112
asymptomatic persistently infected HBV subjects randomized
into two groups, were published. The first group, which inclu-
ded 56 patients, was treated with indomethacin 25 mg three
times a day, and the second group received a placebo. All
patients received treatment for 6 months and were followed
up for a further 3months. The primary end-pointwasHBeAg to
HBeAb seroconversion, and HBV DNA clearance and HBsAg loss
were secondary end-points. At the end of study,HBsAg losswas
observed in two patients in each group, and HBV DNA was
undetectable in 7 patients that received indomethacin com-
pared to 1 patient in the placebo group. HBeAb seroconversion
only occurred in 5 subjects in the indomethacin group. Hepa-
totoxicity (one patient) and gastritis (two patients) were the
reported side effects in the indomethacin group versus one
case of suspected drug-induced gastritis in the placebo
group [16].

Trials evaluating the association of NSAIDs with
IFN-a as a treatment for patients with HCV
chronic hepatitis

The use of NSAIDs plus IFN-a for the treatment of patients
with HCV chronic hepatitis has produced conflicting results.
In 1997, Anderson et al. treated 17 patients with HCV chronic
infection non-responders with a six-month course of therapy
with IFN-a-2b 3 MU trice a week and the administration of
IFN-a-2b 3MU plus ketoprofen for a further four months. No
improvement in the response rate was obtained because no
significant differences in mean serum aminotransferases
were detected after the addition of NSAIDs. Serum HCV
RNA only became transiently negative in one patient. This
study has two potential pitfalls: 1) the absence of a control
group, and 2) the inclusion of patients with cirrhosis, who
present a poor response rate to interferon [78]. A subsequent
randomized double-blinded study enrolled 149 naı̈ve patients
with HCVactive chronic hepatitis. Seventy-six subjects recei-
ved IFN-a-2a 3 MU trice a week plus placebo, and 73 patients
were treated with IFN-a-2a 3 MU trice a week plus tenoxicam
(20 mg/day). The treatments lasted 6 months and were
followed by a 6-month follow-up period. The combination
of IFN-a and tenoxicam was well tolerated, but no differen-
ces in biochemical and virological responses, as measured by
the lack of a peak in 2,5-OAS activity, were detected in both
groups at the end of either the treatment period or the
follow-up [79]. A significant peak in 2,5-OAS activity was
obtained only in patients treated with IFN-a at month 3. In
1999, Fabris et al. performed a trial in 50 patients with HCV
chronic hepatitis that were randomized to receive IFN-a-2b
from 3 to 8 MU trice a week for 6 months alone (24 subjects)
or in combination with ketoprofen 200 mg/day for 5 days a
week (26 subjects). The post-treatment follow-up period
lasted 12 months. No differences in complete response,
which was defined as serum HCV RNA undetectability, and
sustained response, which was defined as negative HCV RNA
in serum following 6 and 12 months after treatment, were



86 S. Fiorino et al.
observed. The incidence of side effects was not significantly
different between the two groups [80].

However, a few trials have suggested that NSAIDs enhance
the antiviral effects of IFN-a. In 1999, Andreone et al.
evaluated the efficacy and tolerability of ketoprofen in 59
with chronic HCV-related hepatitis non-responders to a five-
month course of IFN therapy. These patients were randomly
assigned to three treatment regimens for four months
without withdrawing IFN: 1) 16 patients received leukocytic
IFN-a 6 MU alone trice a week, 2) 17 patients received IFN-a 6
MU trice a week plus ketoprofen 150 mg twice daily, and 3) 16
patients received IFN-a 6 MU trice a week plus ribavirin
400 mg twice daily. Ten patients were excluded because of
contraindications to the combined therapy (e.g., peptic
ulcers or anemia). The post-treatment follow-up period
lasted 6 months. Despite the short duration of the combina-
tion therapy, the addition of ketoprofen to IFN induced an
end-treatment complete response (i.e., normal transamina-
ses and undetectable HCV RNA) in 4/16 patients, which is a
response rate that is similar to treatment with IFN-a plus
ribavirin (4/14 patients). Only 1 patient achieved this in
group A. At the end of the follow-up period, the complete
response was maintained in 0/15, 3/16 and 2/14 subjects,
respectively, and histological improvements were observed
in patients with a complete response [19]. Mild side effects
were described in the group of patients treated with keto-
profen. A further trial confirmed that the virological response
was improved by the administration of IFN-a 2b combined
with ketoprofen at different doses in naı̈ve patients with HCV
chronic hepatitis, about 1/3 of whom had compensated
cirrhosis. Seventy patients were randomized to three groups:
23 subjects received IFN-a 2b 3 MU trice weekly (group 1), 23
patients received IFN-a 2b 3 MU trice weekly plus ketoprofen
200 mg trice a week (group 2), and 24 patients received IFN-a
2b 3 MU trice weekly plus ketoprofen 200 mg twice a day
(group 3). Patients received therapy for 6 months and were
followed-up for another 6 months. The combination of IFN-a
2b with daily ketoprofen administration significantly impro-
ved the response to treatment, which was measured as a
complete response (i.e., end-treatment normal serum tran-
saminases and negative serumHCV RNA), was observed in 10%
(group 1), 5% (group 2) and 29% (group 3) of patients. A
sustained response (i.e., normal serum transaminases and
negative serum HCV RNA at the end of follow-up) was obser-
ved in 5%, 0% and 26% of subjects in groups 1, 2 and 3,
respectively. The IFN-a 2b - ketoprofen combination was
well-tolerated and reduced the incidence of flu-like syn-
drome. All of the groups presented a similar incidence of
gastric symptoms, but anemia prevailed in patients receiving
ketoprofen [81].

In 2003, Andreone et al. conducted a study to evaluate
the efficacy and safety of the combination of IFN-a and
ketoprofen in naı̈ve HCV patients with chronic hepatitis C.
Overall, 40 patients received IFN-a 2a 3 MU trice a week and
40 patients received IFN-a 2a 3 MU trice a week plus keto-
profen 150 mg twice daily. Treatments lasted 6 months, and
patients were followed-up for 6 months. At the end of
treatment, 7/40 patients in the IFN-a group and 14/40 in
the IFN-a plus ketoprofen group achieved a virological
response (i.e., undetectable HCV RNA), which was maintai-
ned at the end of the observation period in 4/40 and 13/40
patients, respectively. Asthenia and flu-like syndrome were
significantly more common with IFN-a alone, but epigastric
pain and anemia were more frequent with the combination
therapy [18]. In 2009, Andreone et al. performed a pilot
phase II study to assess the effect of ketoprofen plus PEG-IFN
2a (PEG-IFN-a 2a) with or without ribavirin in comparison to
PEG-IFN-a 2a plus ribavirin on viral kinetics, STAT1 activity,
the expression of the IFN-dependent gene, 2,5-OAS, and
safety and tolerability in 45 treatment-naı̈ve subjects with
genotype 1 chronic HCV hepatitis. Patients were randomized
to receive the following drug combinations: 15 patients
received PEG-IFN-a 2a 180 mg/wk plus oral ribavirin
800 mg/day for 48 weeks (PR group); 16 patients received
PEG-IFN-a 2a 180 mg/wk for 48 weeks plus oral ketoprofen
200 mg twice daily for the first 4 weeks and 200 mg/day for
the next 20 weeks (PK group); 14 patients received PEG-IFN-
a 2a 180 mg/wk plus oral ribavirin 800 mg/day for 48 weeks
plus oral ketoprofen 200 mg twice daily for the first 4 weeks
and 200 mg/day for the next 20 weeks (PRK group). The
addition of ketoprofen to standard therapy caused an early
and sustained activation of 2,5-OAS transcription and an
early but less sustained activation of STAT1. Although sub-
jects in the PR group had a lower viral load compared to the
PK and PRK groups, a better sustained virological response
and a lower relapse rate were observed in PRK patients.
Ketoprofen use was well tolerated and safe, and only slight
gastrointestinal adverse events were reported. In addition,
neither a dose decrease nor treatment discontinuation was
necessary [82].

Conclusion

Conflicting data have emerged from trials that enrolled
patients with either HBV or HCV chronic hepatitis, who
were either naı̈ve or non-responders to a previous therapy
course. Nevertheless, the combination of IFN-a and keto-
profen has provided encouraging results. The discrepancy
between the data obtained in these clinical trials may
be related to distinct factors, such as the different COX
and lipoxygenase inhibitory activities of NSAIDs, the dose
used, the trial design and duration and the number of
participants. The combinations of PEG-IFN and ribavirin
in HCV chronic hepatitis and PEG-IFN and/or nucleot(s)ide
analogues in HBV chronic hepatitis are more effective than
the association of IFN-a plus ketoprofen and are actually
seen as the best therapies. Moreover, these treatment
regimens and the newly proposed drugs, such as STAT-C,
significantly improved the antiviral response rate and the
outcome of these diseases in the majority of patients.
Therefore, to date, the use of NSAIDs in patients with
chronic viral hepatitis does not have a further utility,
and this report is of only ‘‘historical’’ interest. Neverthe-
less, the trials that have evaluated the effects of NSAIDs
preceded the use of PEG-IFN and were performed with
standard IFN-a. To date, only one trial of HCV patients
treated with PEG-INF and NSAIDs (ketoprofen) has been
published with interesting results. Therefore, the possible
usefulness of ketoprofen in combination with PEG-IFN and
ribavirin for HCV-infected patients, with particular regard
to subjects who were non-responders to standard treat-
ment or with genotype 1, should be evaluated in future
clinical trials.
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